relation algebra
(Q5965969)
residuated Boolean algebra equipped with an involution (converse)
residuated Boolean algebra equipped with an involution (converse)
Language:
Current Data About
relation algebra
(P279) |
(Q7315522)
|
(P2534) |
\begin{aligned}a\lor b&=b\lor a\\a\lor(b\lor c)&=(a\lor b)\lor c\\\overline{\bar a\lor\bar b}\lor\overline{\bar a\lor b}&=a\\a\cdot(b\cdot c)&=(a\cdot b)\cdot c\\a\cdot1&=a\\\hat{\hat a}&=a\\\widehat{a\cdot b}&= \hat b\cdot\hat a\\\widehat{a\lor b}&=\hat a\lor\hat b\\(a\lor b)\cdot c&=(a\cdot c)\lor(b\cdot c)\\(\hat a\cdot\overline{a\cdot b})\lor\bar b&=\bar b\end{aligned}
|
(P6104) |
(Q8487137)
|