Riemann–Roch theorem (Q379048)
theorem that the Euler characteristic of the sheaf cohomology of a holomorphic line bundle on a Riemann surface equals the degree of the bundle plus half of the Euler characteristic of the surface
Language:
Current Data About Riemann–Roch theorem
(P31) (Q65943)
(P138) (Q42299)
(Q27627)
(P361) (Q944443)
(P1318) (Q27627)
(P2384) (Q5155294)
(P2534) \dim\operatorname H^0(\Sigma,L)-\dim\operatorname H^1(\Sigma,L)=\deg(L)+1-g(\Sigma)
(P2579) (Q180969)
(P6104) (Q8487137)
(P7235) \Sigma
L
g
\deg
\operatorname H
\dim
other details
description theorem that the Euler characteristic of the sheaf cohomology of a holomorphic line bundle on a Riemann surface equals the degree of the bundle plus half of the Euler characteristic of the surface

External Links