Riemann–Roch theorem
(Q379048)
theorem that the Euler characteristic of the sheaf cohomology of a holomorphic line bundle on a Riemann surface equals the degree of the bundle plus half of the Euler characteristic of the surface
theorem that the Euler characteristic of the sheaf cohomology of a holomorphic line bundle on a Riemann surface equals the degree of the bundle plus half of the Euler characteristic of the surface
Language:
Current Data About
Riemann–Roch theorem
(P31) |
(Q65943)
|
||||||||||||
(P138) |
(Q42299)
(Q27627) |
||||||||||||
(P361) |
(Q944443)
|
||||||||||||
(P1318) |
(Q27627)
|
||||||||||||
(P2384) |
(Q5155294)
|
||||||||||||
(P2534) |
\dim\operatorname H^0(\Sigma,L)-\dim\operatorname H^1(\Sigma,L)=\deg(L)+1-g(\Sigma)
|
||||||||||||
(P2579) |
(Q180969)
|
||||||||||||
(P6104) |
(Q8487137)
|
||||||||||||
(P7235) |
\Sigma
L
g
\deg
\operatorname H
\dim
|
other details
description | theorem that the Euler characteristic of the sheaf cohomology of a holomorphic line bundle on a Riemann surface equals the degree of the bundle plus half of the Euler characteristic of the surface |
External Links
(P646) |
/m/01krvf
|
(P6366) |
2777639948
|
(P6781) |
Riemann-Roch_Theorem
|
(P10376) |
mathematics/riemann-roch-theorem
|