sequence of Lucas numbers
(Q2503280)
entire infinite integer series where the next number is the sum of the two preceding it (2, 1, 3, 4, 7, 11, ...)
entire infinite integer series where the next number is the sum of the two preceding it (2, 1, 3, 4, 7, 11, ...)
Language:
Current Data About
sequence of Lucas numbers
(P31) |
(Q1759646)
|
||||
(P138) |
(Q274377)
|
||||
(P279) |
(Q21199)
|
||||
(P1889) |
(Q1759646)
|
||||
(P2534) |
L(x) = \frac{2 - x}{1 - x - x^2}
L_{n}=L_{n-1}+L_{n-2}, L_1=1, L_0=2
L_n = \left({ 1+ \sqrt{5} \over 2}\right)^n + \left({ 1- \sqrt{5} \over 2}\right)^n |
||||
(P6104) |
(Q8487137)
|