sequence of Lucas numbers (Q2503280)
entire infinite integer series where the next number is the sum of the two preceding it (2, 1, 3, 4, 7, 11, ...)
Language:
Current Data About sequence of Lucas numbers
(P31) (Q1759646)
(P138) (Q274377)
(P279) (Q21199)
(P1889) (Q1759646)
(P2534) L(x) = \frac{2 - x}{1 - x - x^2}
L_{n}=L_{n-1}+L_{n-2}, L_1=1, L_0=2
L_n = \left({ 1+ \sqrt{5} \over 2}\right)^n + \left({ 1- \sqrt{5} \over 2}\right)^n
(P6104) (Q8487137)
other details
aliases Lucas number
Vn(1,−1)
description entire infinite integer series where the next number is the sum of the two preceding it (2, 1, 3, 4, 7, 11, ...)

External Links