Fibonacci sequence
(Q23835349)
entire infinite integer series where the next number is the sum of the two preceding it (0,1,1,2,3,5,8,13,21,...)
entire infinite integer series where the next number is the sum of the two preceding it (0,1,1,2,3,5,8,13,21,...)
Language:
Current Data About
Fibonacci sequence
(P18) |
|
||||||
(P31) |
(Q23835453)
(Q1759646) (Q5284417) (Q24034552) |
||||||
(P138) |
(Q8763)
|
||||||
(P361) |
(Q177051)
|
||||||
(P373) |
Fibonacci numbers
|
||||||
(P1343) |
(Q47755251)
|
||||||
(P2534) |
\begin{align} F_n = F_{n-1} + F_{n-2},\!\ \\ F_1 = 1, F_2 = 1 \\ \text{or } F_0 = 0, F_1 = 1 \end{align}
F_n = \frac{1}{\sqrt{5}} \left( \left( \frac{1 + \sqrt{5} }{2}\right)^n -\left(\frac{1 - \sqrt{5}}{2}\right)^n \right)
f(x)=\frac{x}{1-x-x^2}
|
||||||
(P2579) |
(Q114908025)
|
||||||
(P2670) |
(Q47577)
|
||||||
(P6104) |
(Q8487137)
|
other details
aliases |
Un(1,−1) Fibonacci series |
description | entire infinite integer series where the next number is the sum of the two preceding it (0,1,1,2,3,5,8,13,21,...) |
External Links