Current Data About
binomial distribution
(P18) |
|
||||||
(P31) |
(Q24034552)
|
||||||
(P279) |
(Q3258231)
(Q1090859) (Q1147928) (Q7893853) (Q26898117) |
||||||
(P373) |
Binomial distributions
|
||||||
(P1343) |
(Q111973641)
|
||||||
(P2534) |
P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}
|
||||||
(P5008) |
(Q6173448)
|
||||||
(P6104) |
(Q8487137)
|
||||||
(P7235) |
P(X = x)
X
\binom{n}{x}
|
||||||
(P10731) |
x \in \{0, 1, 2, \ldots, n\}
|
||||||
(P10732) |
\frac{n!}{x! (n - x)!} p^x (1 - p)^{n - x}
\binom{n}{x} p^x (1 - p)^{n - x}
|
||||||
(P10735) |
\left( p \mathrm{e}^{\mathrm{i} t} + 1 - p \right)^n
|
||||||
(P10738) |
n p
|
||||||
(P10743) |
n p (1 - p)
|
||||||
(P10744) |
\frac{1 - 2p}{\sqrt{n p (1 - p)}}
|
||||||
(P10745) |
\frac{1 - 6 p (1 - p)}{n p (1 - p)}
|
||||||
(P10747) |
\left( p \left( \mathrm{e}^t - 1 \right) + 1 \right)^n
|
other details
description | probability distribution |
External Links