ring
(Q161172)
algebraic structure that has compatible structures of an abelian group and a monoid, in particular having multiplicative identity
algebraic structure that has compatible structures of an abelian group and a monoid, in particular having multiplicative identity
Language:
Current Data About
ring
(P279) |
(Q13512116)
(Q1333055) (Q17102802)
|
||||||||||||||||
(P527) |
(Q2767837)
(Q181296)
(Q208237)
(Q10533491)
|
||||||||||||||||
(P910) |
(Q17329131)
|
||||||||||||||||
(P1889) |
(Q17102802)
(Q13512116) |
||||||||||||||||
(P2534) |
\begin{aligned}(r+s)+t&=r+(s+t)\\r+s&=s+r\\r+0&=r\\r+(-r)&=0\\(rs)t&=r(st)\\1r=r1&=r\\r(s+t)&=rs+rt\\(r+s)t&=rt+st\end{aligned}
|
||||||||||||||||
(P2579) |
(Q1208658)
|
||||||||||||||||
(P5008) |
(Q6173448)
|
||||||||||||||||
(P6104) |
(Q8487137)
|
||||||||||||||||
(P6802) |
Dedekind.jpeg
|
||||||||||||||||
(P7235) |
\begin{aligned}(r+s)+t&=r+(s+t)\\(rs)t&=r(st)\\\end{aligned}
r+s=s+r
0
\begin{aligned}r(s+t)&=rs+rt\\(r+s)t&=rt+st\end{aligned}
1
-r
|
other details
aliases |
ring with identity unital ring associative ring associative ring with identity associative unital ring |
description | algebraic structure that has compatible structures of an abelian group and a monoid, in particular having multiplicative identity |
External Links