Haar measure (Q1162676)
left-invariant (or right-invariant) measure on locally compact topological group
Language:
Current Data About Haar measure
(P31) (Q24034552)
(P61) (Q551909)
(P138) (Q551909)
(P279) (Q192276)
(P575) +1933-00-00T00:00:00Z
(P2534) \begin{aligned}&\mu\colon\operatorname{Borel}(G)\to[0,\infty]\\&\forall g\in G,S\in\operatorname{Borel}(G)\colon\mu(gS)=\mu(S)\\&\mu(S)=\inf\{\mu(U)\colon S\subset U\in\operatorname{Open}(G)\}=\sup\{\mu(K)\colon S\supset K\in\operatorname{Comp}(X)\end{aligned}
(P2579) (Q874429)
(Q15614122)
(P6104) (Q8487137)
(P7235) \mu
G
\operatorname{Borel}(G)
\operatorname{Open}(G)
\inf
\sup
other details
aliases left Haar measure
right Haar measure
Haar integral
description left-invariant (or right-invariant) measure on locally compact topological group

External Links