multivariate normal distribution
(Q1149000)
generalization of the one-dimensional normal distribution to higher dimensions
generalization of the one-dimensional normal distribution to higher dimensions
Language:
Current Data About
multivariate normal distribution
(P18) |
![]() |
||||||||||
(P279) |
(Q5365806)
(Q1333358) (Q4820795) |
||||||||||
(P973) |
https://doi.org/10.1016%2Fj.jmva.2008.07.006
|
||||||||||
(P1343) |
(Q111973641)
|
||||||||||
(P2534) |
f(\boldsymbol{x}) = (2 \pi)^{-n/2} (\det \boldsymbol{\Sigma})^{-1/2} \mathrm{e}^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}
|
||||||||||
(P5008) |
(Q6173448)
|
||||||||||
(P6104) |
(Q8487137)
|
||||||||||
(P7235) |
f(\boldsymbol{x})
\boldsymbol{\mu}
\boldsymbol{\Sigma}
\det \boldsymbol{A}
\boldsymbol{A}^{-1}
|
||||||||||
(P10731) |
x_i \in \mathbb{R}
|
||||||||||
(P10738) |
\boldsymbol{\mu}
|
other details
aliases |
multivariate Gaussian distribution joint normal distribution |
description | generalization of the one-dimensional normal distribution to higher dimensions |
External Links
(P227) |
4227589-1
|
(P646) |
/m/0d9xb
|
(P2812) |
MultivariateNormalDistribution
|
(P6366) |
177384507
|
(P6564) |
multivariate-normal-distribution
|
(P10283) |
C177384507
|
(P10565) |
18615
|