multivariate normal distribution (Q1149000)
generalization of the one-dimensional normal distribution to higher dimensions
Language:
(P18) Image Provided By https://upload.wikimedia.org/wikipedia/commons/8/8e/MultivariateNormal.png
(P279) (Q5365806)
(Q1333358)
(Q4820795)
(P973) https://doi.org/10.1016%2Fj.jmva.2008.07.006
(P1343) (Q111973641)
(P2534) f(\boldsymbol{x}) = (2 \pi)^{-n/2} (\det \boldsymbol{\Sigma})^{-1/2} \mathrm{e}^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}
(P5008) (Q6173448)
(P6104) (Q8487137)
(P7235) f(\boldsymbol{x})
\boldsymbol{\mu}
\boldsymbol{\Sigma}
\det \boldsymbol{A}
\boldsymbol{A}^{-1}
(P10731) x_i \in \mathbb{R}
(P10738) \boldsymbol{\mu}
other details
aliases multivariate Gaussian distribution
joint normal distribution
description generalization of the one-dimensional normal distribution to higher dimensions

External Links